Chemical Processes at the Water-Manganite (γ-MnOOH) Interface

نویسنده

  • Madeleine Ramstedt
چکیده

The chemistry of mineral surfaces is of great importance in many different areas including natural processes occurring in oceans, rivers, lakes and soils. Manganese (hydr)oxides are one important group to these natural processes, and the thermodynamically most stable trivalent manganese (hydr)oxide, manganite (γ-MnOOH), is studied in this thesis. This thesis summarises six papers in which the surface chemistry of synthetic manganite has been investigated with respect to surface acid-base properties, dissolution, and adsorption of Cd(II) and the herbicide N-(phosphonomethyl)glycine (glyphosate, PMG). In these papers, a wide range of analysis techniques were used, including X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), potentiometry, electrophoretic mobility measurements and wet chemical techniques, in order to obtain a more complete understanding of the different processes occurring at the manganite-water interface. From the combined use of these techniques, a 1-pKa acid-base model was established that is valid at pH>6. The model includes a Na interaction with the surface: =MnOH2 +1⁄2 =MnOH + H log β (intr.) = -8.20 = -pHiep =MnOH2 +1⁄2 + Na =MnOHNa + H log β (intr.) = -9.64 At pH<6 the manganite crystals dissolve and disproportionate into pyrolusite (β-MnO2) and Mn(II)-ions in solution according to: 2 γ-MnOOH + 2H β-MnO2 + Mn + 2H2O log K = 7.61 ± 0.10 The adsorption and co-adsorption of Cd(II) and glyphosate at the manganite surface was studied at pH>6. Cd(II) adsorption displays an adsorption edge at pH~8.5. Glyphosate adsorbs over the entire pH range, but the adsorption decreases with increasing pH. When the two substances are co-adsorbed, the adsorption of Cd(II) is increased at low pH but decreased at high pH. The adsorption of glyphosate is increased in the entire pH range in the presence of Cd(II). From XPS, FTIR and EXAFS it was found that glyphosate and Cd(II) form inner sphere complexes. The binary Cd(II)-surface complex is bonded by edge sharing of Mn and Cd octahedra on the (010) plane of manganite. Glyphosate forms inner-sphere complexes through an interaction between the phosphonate group and the manganite surface. The largest fraction of this binary glyphosate complex is protonated throughout the pH range. A ternary surface complex is also present, and its structure is explained as type B ternary surface complex (surface-glyphosate-Cd(II)). The chelating rings between the Cd(II) and glyphosate, found in aqueous complexes, are maintained at the surface, and the ternary complex is bound to the surface through the phosphonate group of the ligand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity of Pb(II) at the Mn(III,IV) (oxyhydr)oxide--water interface.

In this study, the reactivity of lead (Pb(II)) on naturally occurring Mn(III,IV) (oxyhydr)oxide minerals was evaluated using kinetic, thermodynamic, and spectroscopic investigations. Aqueous Pb(II) was more strongly adsorbed to birnessite (delta-MnO1.7) than to manganite (gamma-MnOOH) under all experimental conditions. The isoteric heat of Pb adsorption (delta HT) or birnessite was 94 kJ mol-1 ...

متن کامل

Microscopic observations of reductive manganite dissolution under oxic conditions.

At oxic/anoxic transition zones, manganese release from (hydr)oxide minerals into aqueous solution is a dynamic balance between mineral dissolution and Mn2+(aq) oxidation and precipitation, which are processes respectively promoted by organic reductants and molecular oxygen. We employ a flow-through atomic force microscope reactor (AFM-R) to investigate the reductive dissolution of the [010] su...

متن کامل

Oxidation of Phenol in Acidic Aqueous Suspensions of Manganese Oxides

-Phenol (benzenol) oxidation by three synthetic manganese oxides (buserite, manganite, and feitknechtite) has been studied in aerated, aqueous, acidified suspensions. The rate of reaction was pH dependent. Oxidation was greatly enhanced below pH 4, when diphenoquinone and p-benzoquinone were identified as the first products. Initial reaction rate was correlated with standard reduction potential...

متن کامل

Seed layer technique for high quality epitaxial manganite films

We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Struc...

متن کامل

Turbulent Events and Gas-Side Mass Transfer Coefficients in a Wavy Air-Water Stratified Flow

Turbulence structure on the gas side of a wavy stratified flow was experimentally investigated in a near horizontal 18.7 cm (H) 10 cm (W) 5.5m (L) rectangular duct.By applying the Variable Interval Time Averaging (VITA) technique to the hot wire anemometer measurements frequency of occurrence of turbulent events were detected near the air-water interface. Experimental results showed that fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004